

Available online at www.sciencedirect.com

Tetrahedron Letters 47 (2006) 2009–2012

Tetrahedron Letters

Selective oxidation of sulfides to sulfoxides and sulfones using hydrogen peroxide (H_2O_2) in the presence of zirconium tetrachloride

K. Bahrami*

Department of Chemistry, Razi University, Kermanshah 67149, Iran

Received 30 November 2005; revised 22 December 2005; accepted 12 January 2006 Available online 3 February 2006

Abstract—Hydrogen peroxide (H_2O_2) in the presence of zirconium tetrachloride is a very efficient reagent for the oxidation of sulfides to sulfoxides and sulfones in methanol at room temperature. It is noteworthy that under such conditions, the sulfide function is highly reactive, and various other functional groups such as alkenes and a ketone are tolerated. 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Oxidation of sulfides is the most straightforward method for the synthesis of sulfoxides and sulfones,^{[1](#page-2-0)} some examples of which are important as commodity chemicals and, in some cases, as pharmaceuticals.[2](#page-2-0) This transformation has been accomplished in a variety of ways.[3–15](#page-2-0) However, the reported methods rarely offer the ideal combination of simplicity of method, rapid and selective reactions, and high yields of products and often suffer from a lack of generality and economic applicability. On the other hand, selective oxidation of sulfides to sulfoxides and sulfides to sulfones with the same reagent system under adjusted reaction conditions is an important process in synthetic organic chemistry and only a few reports are available in the literature for this purpose.^{[16](#page-3-0)} As a consequence, the introduction of new methods and/or further work on technical improvements to overcome the limitations is still an important experimental challenge. The chemoselective oxidation of sulfides is also another point of interest. During recent years, very useful procedures involving aqueous hydrogen peroxide (H_2O_2) as the terminal oxidant, due to the effective oxygen content, low cost, safety in storage and operation and environmentally friendly character of H_2O_2 and a Lewis acid as an activator have been developed to promote this transforma τ tion,^{[17](#page-3-0)} The activator is essential for the success of the reaction because H_2O_2 oxidizes sulfides rather slowly. A novel method for activating hydrogen peroxide using titanium(III) chloride, was described by Shigerue and co-workers.[18](#page-3-0) Herein, we describe the successful use of the $H_2O_2/ZrCl_4$ system as a method to oxidize sulfides efficiently to either sulfoxides or sulfones and selectively oxidize sulfides containing other easily oxidized groups. The route for the synthesis of sulfoxides and sulfones is shown in Scheme 1.

The applicability of the $H_2O_2/ZrCl_4$ system was then examined for the sulfoxidation of diaryl, dibenzyl, aryl benzyl, dialkyl and cyclic sulfides in methanol at room temperature. A ratio of 2:14:4 sulfide/ $H_2O_2/ZrCl_4$ was found to be optimum for complete conversion of sulfides to sulfoxides and the results are presented in [Table 1.](#page-1-0) As shown, all the reactions were complete within a very short time and the sulfoxides were obtained in almost quantitative yields as the sole oxidation products.

Scheme 1. Reagents and conditions: (i) H_2O_2 (14 equiv), $ZrCl_4$ (4 equiv), CH₃OH, rt; (ii) H_2O_2 (20 equiv), ZrCl₄ (5 equiv), CH₃OH, rt.

^{*} Fax: +98 831 4274559; e-mail: k2005bahrami@yahoo.com

^{0040-4039/\$ -} see front matter © 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2006.01.051

Table 1. Oxidation of sulfides to sulfoxides using the H₂O₂ (14 equiv)/ZrCl₄ (4 equiv) system

Sulfide 1	Sulfoxide 2 ^a	Time (min)	Yield \mathfrak{b} (%)
$(C_6H_5)_2S$ 1a	$(C_6H_5)_2SO$ 2a		96
$C_6H_5CH_2SC_6H_5$ 1b	$C_6H_5CH_2SOC_6H_5$ 2b	\overline{c}	96
$(C_6H_5CH_2)_2S$ 1c	$(C_6H_5CH_2)_2SO$ 2c	2	97
$4-O_2NC_6H_4CH_2SC_6H_5$ 1d	$4-O_2NC_6H_4CH_2SOC_6H_5$ 2d	3	95
$4-MeC6H4SCH2C6H5$ 1e	$4-MeC6H4SOCH2C6H5$ 2e	\overline{c}	94
$4-CIC6H4SCH2C6H5$ 1f	$4-CIC_6H_4SOCH_2C_6H_5$ 2f	3	94
$4-BrC_6H_4CH_2SCH_2C_6H_5$ 1g	$4-BrC_6H_4CH_2SOCH_2C_6H_5$ 2g	3	96
$4-BrC_6H_4CH_2SC_6H_44-Me$ 1h	$4-BrC_6H_4CH_2SOC_6H_44-Me$ 2h	2	95
$4-BrC_6H_4CH_2SC_6H_44-Cl$ 1i	$4-BrC_6H_4CH_2SOC_6H_44-Cl$ 2i	3	97
$4-O_2NC_6H_4CH_2SC_6H_44-Cl$ 1j	$4-O_2NC_6H_4CH_2SOC_6H_44-Cl$ 2j	3	93
1 ^k	2k	3	99
11	21 റ	3	99
C_6H_5SMe 1m	C_6H_5SOMe 2m		97
$4-MeC6H4SMe$ 1n	$4-MeC6H4SOME$ 2n		95
4 -ClC ₆ H ₄ SMe 1o	$4-CIC6H4SOME$ 2o	1.5	94
$C_6H_5SCH_2CH=CH_2 1p$	$C_6H_5SOCH_2CH=CH_2 2p$		95
$(CH2=CHCH2)2S 1q$	$(CH2=CHCH2)2SO 2q$		96
$(n-C_4H_9)_2S$ 1r	$(n-C_4H_9)_2SO$ 2r		94

^a All products were identified by comparison of their physical and spectral data with those of authentic samples.

b Isolated yields.

The chemoselectivity is noteworthy. Under such conditions, the sulfide function was highly reactive, and various other functional groups such as alkenes and a ketone (Table 1, entries 1p, 1q and 1l), were tolerated.

In order to demonstrate the efficiency and applicability of the $H_2O_2/ZrCl_4$ system further, the chemoselective oxidation of sulfides to sulfones was also investigated. The reaction conditions specified in [Table 2](#page-2-0) were optimized for carrying out the reaction in methanol at room temperature (sulfide/H₂O₂/ZrCl₄ ratio = 2:20:5). In practice, using a lower amount of oxidant produced a mixture of sulfoxide and sulfone. It was found that a wide variety of diaryl, dialkyl, dibenzyl, aryl benzyl, alkyl aryl and cyclic sulfides were oxidized to their corresponding sulfones in excellent yields in methanol at room temperature. The results are summarized in [Table 2](#page-2-0).

In conclusion, $ZrCl₄$ is an excellent Lewis acid for promoting the highly chemoselective and rapid oxidation of functionalized sulfides with 30% H₂O₂ under very mild conditions. It is noteworthy that the reaction tolerates oxidatively sensitive functional groups and that the sulfur atom is selectively oxidized.

2. General procedure for the oxidation of sulfides

In a round-bottomed flask (50 mL) equipped with a magnetic stirrer, a solution of sulfide (2 mmol) in CH₃OH (15 mL) was prepared. H₂O₂ (30%, 14 mmol,

1.4 mL) and $ZrCl_4$ (4 mmol, 0.93 g) were added and the mixture was stirred at room temperature for the time indicated in Table 1. The progress of the reaction was monitored by TLC (eluent: *n*-hexane/ethyl acetate: 7/3). When the starting sulfide had completely disappeared, the reaction mixture was quenched by adding water (15 mL), extracted with chloroform $(4 \times 10 \text{ mL})$ and the extract dried with anhydrous $MgSO₄$. The filtrate was evaporated and the corresponding sulfoxide was obtained as the only product (Table 1). An identical procedure was employed using 30% H₂O₂ (20 mmol, 2 mL) and $ZrCl_4$ (5 mmol, 1.16 g) for the oxidation of sulfides to sulfones ([Table 2](#page-2-0)).

2.1. 4-Nitrobenzyl phenyl sulfoxide 2d

Mp 161–163 °C; IR (KBr, cm⁻¹) 1026, 1345, 1515; ¹H NMR (200 MHz, CDCl₃): δ 4.04 (d, 1H, $J = 12.0$ Hz), 4.24 (d, 1H, $J = 12.0$ Hz), 7.13 (d, 2H, $J = 6.5$ Hz), 7.40–7.51 (m, 5H), 8.12 (d, 2H, $J = 6.5$ Hz). Anal. Calcd for $C_{13}H_{11}NSO_3$: C, 59.76; H, 4.24; N, 5.36; S, 12.27. Found: C, 59.65; H, 4.32; N, 5.25; S, 12.40.

2.2. Benzyl 4-bromobenzyl sulfoxide 2g

Mp 139–140 °C; IR (KBr, cm⁻¹) 1028; ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3)$: δ 3.78 (d, 1H, $J = 13.1 \text{ Hz}$), 3.89 (d, 1H, $J = 13.09$ Hz), 3.95 (s, 2H), 7.2 (d, 2H, $J = 8.3$ Hz), 7.32–7.33 (m, 2H), 7.40–7.44 (m, 3H), 7.54 (d, 2H, $J = 8.3$ Hz). Anal. Calcd for $C_{14}H_{13}SOBr$: C, 54.38; H, 4.24; S, 10.37. Found: C, 54.30; H, 4.20; S, 10.47.

Table 2. Oxidation of sulfides to sulfones using the H_2O_2 (20 equiv)/ZrCl₄ (5 equiv) system

Sulfide 1	Sulfone 3 ^a	Time (min)	Yield \mathfrak{b} (%)
$(C_6H_5)_2S$ 1a	$(C_6H_5)_2SO_2$ 3a	1.5	99
$C_6H_5CH_2SC_6H_5$ 1b	$C_6H_5CH_2SO_2C_6H_5$ 3b	\overline{c}	98
$(C_6H_5CH_2)_2S$ 1c	$(C_6H_5CH_2)_2SO_2$ 3c	$\overline{2}$	97
$4-O_2NC_6H_4CH_2SC_6H_5$ 1d	$4-O_2NC_6H_4CH_2SO_2C_6H_5$ 3d	3.5	99
$4-MeC6H4SCH2C6H5$ 1e	$4-MeC6H4SO2CH2C6H5$ 3e	$\overline{2}$	96
$4-CIC6H4SCH2C6H5$ 1f	$4-CIC6H4SO2CH2C6H5$ 3f	3.5	95
$4-BrC_6H_4CH_2SCH_2C_6H_51g$	$4-BrC_6H_4CH_2SO_2CH_2C_6H_5$ 3g	3	96
$4-BrC_6H_4CH_2SC_6H_44-Me$ 1h	$4-BrC_6H_4CH_2SO_2C_6H_44-Me$ 3h	2	95
$4-BrC_6H_4CH_2SC_6H_44-Cl$ 1i	$4-BrC_6H_4CH_2SO_2C_6H_44-Cl$ 3i	3	97
$4-O_2NC_6H_4CH_2SC_6H_44-Cl$ 1j	$4-O_2NC_6H_4CH_2SO_2C_6H_44-Cl$ 3j	4	99
1 ^k	3k O ₂	2	99
11	31 O ₂	2	99
C_6H_5SMe 1m	$C_6H_5SO_2Me$ 3m		97
$4-MeC6H4SMe$ 1n	$4-MeC6H4SO2Me$ 3n		98
$4\text{-}ClC_6H_4SMe$ 10	$4-CIC6H4SO2Me$ 3o	2	95
$C_6H_5SCH_2CH=CH_2 1p$	$C_6H_5SO_2CH_2CH=CH_23p$		95
$(CH2=CHCH2)2S 1q$	$(CH2=CHCH2), SO2$ 3q		98
$(n-C_4H_9)_2S$ 1r	$(n-C_4H_9)_2SO_2$ 3r	2	97

^a All products were identified by comparison of their physical and spectral data with those of authentic samples.

b Isolated vields.

2.3. 4-Nitrobenzyl phenyl sulfone 3d

Mp 204–205 °C; IR (KBr, cm⁻¹) 1142, 1300, 1345, 1515;
¹H NMP (200 MHz, CDCL); $\delta A A4$ (s, 2H), 7, 10 (d, 2H) 1 H NMR (200 MHz, CDCl₃): δ 4.44 (s, 2H), 7.10 (d, 2H, $J = 6.5$ Hz), 7.40–7.70 (m, 5H), 8.18 (d, 2H, $J = 6.5$ Hz). Anal. Calcd for C₁₃H₁₁NSO₄: C, 56.31; H, 3.99; N, 5.05; S, 11.56. Found: C, 56.17; H, 4.10; N, 4.97; S, 11.70.

2.4. Benzyl 4-bromobenzyl sulfone 3g

Mp 176–178 °C; IR (KBr, cm⁻¹) 1116, 1299; ¹H NMR $(80 \text{ MHz}, \text{ CDCl}_3): \delta$ 4.02 (s, 2H), 4.14 (s, 2H), 7.17– 7.60 (m, 9H). Anal. Calcd for $C_{14}H_{13}BrSO_2$: C, 51.70; H, 4.03; S, 9.86. Found: C, 51.60; H, 4.15; S, 9.90.

Acknowledgements

We are thankful to the Razi University Research Council, for partial support of this work.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at [doi:10.1016/j.tetlet.](http://dx.doi.org/10.1016/j.tetlet.2006.01.051) [2006.01.051.](http://dx.doi.org/10.1016/j.tetlet.2006.01.051)

References and notes

1. (a) Hollingworth, G. J. In Comprehensive Organic Functional Group Transformations; Katritzky, A. R., MethCohn, O., Rees, C. W., Pattenden, G., Eds.; Elsevier: Oxford, 1995; Vol. 2, pp 144–152, pp 154–156; (b) The Synthesis of Sulphones, Sulphoxides, and Cyclic Sulphides; Patai, S., Rappoport, Z., Eds.; Wiley: New York, 1994; (c) Simpkins, N. S. In Sulphones in Organic Synthesis; Baldwin, J. E., Magnus, P. D., Eds.; Pergamon: Oxford, 1993; pp 5–99.

- 2. (a) Clark, E. In Kirk–Othmer Encyclopedia of Chemical Technology, 4th ed; Kroschwitz, J. I., Howe-Grant, M., Eds.; Wiley: New York, 1997; Vol. 23, pp 134–146; (b) Willer, R. In Kirk–Othmer Encyclopedia of Chemical Technology, 4th ed; Kroschwitz, J. I., Howe-Grant, M., Eds.; Wiley: New York, 1997; Vol. 23, pp 217– 232.
- 3. Chen, Y.-J.; Huang, Y.-P. Tetrahedron Lett. 2000, 41, 5233.
- 4. Shaabani, A.; Teimouri, M. B.; Safaei, H. R. Synth. Commun. 2000, 30, 265.
- 5. Bravo, A.; Dordi, B.; Fontana, F.; Minisci, F. J. Org. Chem. 2001, 66, 3232.
- 6. Procter, D. J. J. Chem. Soc., Perkin Trans. 1 2001, 335.
- 7. Batigalhia, F.; Zaldini-Hernandes, M.; Ferreira, A. G.; Malvestiti, I.; Cass, Q. B. Tetrahedron 2001, 57, 9669.
- 8. Martin, S. E.; Rossi, L. I. Tetrahedron Lett. 2001, 42, 7147.
- 9. Xiong, Z.-X.; Huang, N.-P.; Zhong, P. Synth. Commun. 2001, 31, 245.
- 10. Hajipour, A. R.; Mallakpour, S. E.; Adibi, H. J. Org. Chem. 2002, 67, 8666.
- 11. Pelotier, B.; Anson, M. S.; Campbell, I. B.; Macdonald, S. J. F.; Priem, G.; Jackson, R. F. W. Synlett 2002, 1055.
- 12. Kim, S. S.; Nehru, K.; Kim, S. S.; Kim, D. W.; Jung, H. C. Synthesis 2002, 2484.
- 13. (a) Firouzabadi, H.; Seddighi, M. Synth. Commun. 1991, 21, 211; (b) Firouzabadi, H.; Mohammadpoor-Baltork, I. Bull. Chem. Soc. Jpn. 1992, 65, 1131; (c) Iranpoor, N.;

Firouzabadi, H.; Pourali, A.-R. Tetrahedron 2002, 58, 5179; (d) Iranpoor, N.; Firouzabadi, H.; Pourali, A.-R. Synlett 2004, 347.

- 14. Kar, G.; Saikia, A. K.; Bora, U.; Dehury, S. K.; Chaudhuri, M. K. Tetrahedron Lett. 2003, 44, 4503.
- 15. Xu, W. L.; Li, Y. Z.; Zhang, Q. S.; Zhu, H. S. Synthesis 2004, 227.
- 16. (a) Venier, C. G.; Squires, T. G.; Chen, Y.-Y.; Hussmann, G. P.; Shei, J. C.; Smith, B. F. J. Org. Chem. 1982, 47, 3773; (b) Choudary, B. M.; Bharathi, B.; Reddy, C. V.;

Kantam, M. L. J. Chem. Soc., Perkin Trans. 1 2002, 2069; (c) McKillop, A.; Tarbin, J. A. Tetrahedron Lett. 1983, 24, 1505; (d) Greenhalgh, R. P. Synlett 1992, 235; (e) Yamazaki, S. Bull. Chem. Soc. Jpn. 1996, 69, 2955; (f) Varma, R. S.; Saini, R. K.; Meshram, H. M. Tetrahedron Lett. 1997, 38, 6525.

- 17. Sato, K.; Hyodo, M.; Aoki, M.; Zheng, X.-Q.; Noyori, R. Tetrahedron 2001, 57, 2469.
- 18. Yoshihito, W.; Tatsuo, N.; Shigeru, O. Synthesis 1981, 204.